Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473779

RESUMO

The use of vitamin C (VC) in high doses demonstrates a potent tumor suppressive effect by mediating a glucose-dependent oxidative stress in Kirsten rat sarcoma (KRAS) mutant cancer cells. VC with arsenic trioxide (ATO) is a promising drug combination that might lead to the development of effective cancer therapeutics. Considering that a tumor suppressive effect of VC requires its high-dose administration, it is of interest to examine the toxicity of two enantiomers of VC (enantiomer d-optical isomer D-VC and natural l-optical isomer L-VC) in vitro and in vivo. We show that the combinations of L-VC with ATO and D-VC with ATO induced a similar cytotoxic oxidative stress in KrasG12D-expressing mutant cancer cells as indicated by a substantial increase in reactive oxidative species (ROS) production and depolarization of mitochondria. To examine the L-VC and D-VC toxicity effects, we administered high doses of D-VC and L-VC to CD1 mice and carried out an evaluation of their toxic effects. The daily injections of L-VC at a dose of 9.2 g/kg for 18 days were lethal to mice, while 80% of mice remained alive following the similar high-dose administration of D-VC. Following the drug injection courses and histopathological studies, we determined that a natural form of VC (L-VC) is more harmful and toxic to mice when compared to the effects caused by the similar doses of D-VC. Thus, our study indicates that the two enantiomers of VC have a similar potency in the induction of oxidative stress in cancer cells, but D-VC has a distinctive lower toxicity in mice compared to L-VC. While the mechanism of a distinctive toxicity between D-VC and L-VC is yet to be defined, our finding marks D-VC as a more preferable option compared to its natural enantiomer L-VC in clinical settings.


Assuntos
Ácido Ascórbico , Neoplasias , Animais , Camundongos , Ácido Ascórbico/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Estresse Oxidativo , Vitaminas/farmacologia , Trióxido de Arsênio/farmacologia
2.
J Pers Med ; 13(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003914

RESUMO

Asbestos is a known carcinogen; however, the influence of chrysotile asbestos on the development of tumor-related diseases remains a subject of intense debate within the scientific community. To analyze the effect of asbestos, we conducted a study using the MRC5 cell line. We were able to demonstrate that chrysotile asbestos stimulated the production of reactive oxygen species (ROS), leading to cell death and DNA damage in the MRC5 cell line, using various techniques such as ROS measurement, comet assay, MTT assay, and qPCR. In addition, we found that chrysotile asbestos treatment significantly increased extracellular mitochondrial DNA levels in the culture medium and induced significant changes in the expression profile of several miRNAs, which was the first of its kind. Thus, our research highlights the importance of studying the effects of chrysotile asbestos on human health and reveals multiple adverse effects of chrysotile asbestos.

3.
Cells ; 11(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36359850

RESUMO

The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.


Assuntos
Ácido Ascórbico , Neoplasias , Humanos , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo , Vitaminas/farmacologia , Oxirredução , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Biomed Res Int ; 2022: 9426623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619305

RESUMO

Background: Kirsten rat sarcoma (KRAS) protein is an essential contributor to the development of pancreatic ductal adenocarcinoma (PDAC). KRAS G12D and G12V mutant tumours are significant challenges in cancer therapy due to high resistance to the treatment. Objective: To determine how effective is the ATO/D-VC combination in suppression of PDAC the mouse transgenic model. This study investigated the antitumour effect of a novel combination of arsenic trioxide (ATO) and D-ascorbic acid isomer (D-VC). Such a combination can be used to treat KRAS mutant cancer by inducing catastrophic oxidative stress. Methods: In this study, we examined the effectiveness of ATO and D-VC on xenograft models-AK192 cells transplanted into mice. Previously, it has been shown that a high concentration of Vitamin C (VC) selectively can kill the cells expressing KRAS. Results: The results of this study demonstrated that the combination of VC with a low dose of the oxidizing drug ATO led to the enhancement of the therapeutic effect. These findings suggest that the combined treatment using ATO and D-VC is a promising approach to overcome the limitation of drug selectivity and efficacy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Trióxido de Arsênio/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Combinação de Medicamentos , Oxirredução , Linhagem Celular Tumoral , Neoplasias Pancreáticas
5.
Clin Endosc ; 54(1): 32-37, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32447875

RESUMO

We carried out an analysis of the total incidence of colon cancer throughout Kazakhstan. Retrospectively, according to the regional reports on endoscopic screening, the study showed an increase in the age-related incidence of colorectal cancer (CRC) cases from 2004-2008 to 2009-2014. The peak of morbidity in both periods was noted in the age category of >70 years. The indicators of the territorial distribution of CRC incidence make it possible to divide the regions into areas with low or high rates of CRC. Specific indicators showed newly diagnosed cases of CRC stages I, II, III, and IV in 2004-2018. The incidence rates of stages I and II showed a two-fold increase (35%-67.4%) and the incidence of stage IV showed a decline from 19.3% to 13.1% and of stage III from 45.7% to 19.5% from 2004 to 2018, respectively. An analysis of CRC incidence throughout Kazakhstan showed an increase in the overall incidence. Since population-based CRC screening was introduced in 2011, the morbidity was found to increase for stages I and II.

6.
Medicina (Kaunas) ; 56(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266046

RESUMO

Background and objectives: The aim of the study was to scrutinize the ability of epsilon-aminocaproic acid (EACA) to prevent radiation-induced damage to human cells. Materials and Methods: Human peripheral blood mononuclear cells (PBMCs) were exposed to ionizing radiation at three low doses (22.62 mGy, 45.27 mGy, and 67.88 mGy) in the presence of EACA at the concentration of 50 ng/mL. Results: EACA was able to prevent cell death induced by low-dose X-ray radiation and suppress the formation of reactive oxygen species (ROS). EACA also demonstrated a capacity to protect DNA from radiation-induced damage. The data indicated that EACA is capable of suppression of radiation-induced apoptosis. Comparative tests of antioxidative activity of EACA and a range of free radical scavengers showed an ability of EACA to effectively inhibit the generation of ROS. Conclusions: This study showed that the pretreatment of PBMCs with EACA is able to protect the cells from radiation-elicited damage, including free radicals' formation, DNA damage, and apoptosis.


Assuntos
Ácido Aminocaproico , Antifibrinolíticos , Humanos , Leucócitos Mononucleares
7.
Front Cell Dev Biol ; 8: 617884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553154

RESUMO

Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions. Although CDD naturally constitutes a relatively minor fraction of the overall DNA damage induced by free radicals, DNA cross-linking agents, and ionizing radiation, if left unrepaired, these lesions cause a number of serious consequences, such as gross chromosomal rearrangements and genome instability. If not tightly controlled, the repair of ICLs and clustered bi-stranded oxidized bases via DNA excision repair will either inhibit initial steps of repair or produce persistent chromosomal breaks and consequently be lethal for the cells. Biochemical and genetic evidences indicate that the removal of CDD requires concurrent involvement of a number of distinct DNA repair pathways including poly(ADP-ribose) polymerase (PARP)-mediated DNA strand break repair, base excision repair (BER), nucleotide incision repair (NIR), global genome and transcription coupled nucleotide excision repair (GG-NER and TC-NER, respectively), mismatch repair (MMR), homologous recombination (HR), non-homologous end joining (NHEJ), and translesion DNA synthesis (TLS) pathways. In this review, we describe the role of DNA glycosylase-mediated BER pathway in the removal of complex DNA lesions.

8.
Prog Biophys Mol Biol ; 141: 25-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030071

RESUMO

Controversial, sensational and often contradictory scientific reports have triggered active debates over the biological effects of electromagnetic fields (EMFs) in literature and mass media the last few decades. This could lead to confusion and distraction, subsequently hampering the development of a univocal conclusion on the real hazards caused by EMFs on humans. For example, there are lots of publications indicating that EMF can induce apoptosis and DNA strand-breaks in cells. On the other hand, these effects could rather be beneficial, in that they could be effectively harnessed for treatment of various disorders, including cancer. This review discusses and analyzes the results of various in vitro, in vivo and epidemiological studies on the effects of non-ionizing EMFs on cells and organs, including the consequences of exposure to the low and high frequencies EM spectrum. Emphasis is laid on the analysis of recent data on the role of EMF in the induction of oxidative stress and DNA damage. Additionally, the impact of EMF on the reproductive system has been discussed, as well as the relationship between EM radiation and blood cancer. Apart from adverse effects, the therapeutic potential of EMFs for clinical use in different pathologies is also highlighted.


Assuntos
Campos Eletromagnéticos , Magnetoterapia , Animais , Quebras de DNA/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Fertilidade/efeitos da radiação , Humanos , Neoplasias/etiologia , Neoplasias/terapia , Estresse Oxidativo/efeitos da radiação
9.
Electromagn Biol Med ; 38(1): 21-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30409044

RESUMO

The correlation between shape and concentration of silver nanoparticles (AgNPs), their cytotoxicity and formation of reactive oxygen species (ROS) in the presence of electromagnetic fields (EMFs) has been investigated. In addition, the bio-effects caused by the combination of EMFs and graphene nanoparticles (GrNPs) have been also assessed. The AgNPs of three shapes (triangular, spherical and colloidal) and GrNPs were added in high concentrations to the culture of human fibroblasts and exposed to EMF of three different frequencies: 900, 2400 and 7500 MHz. The results demonstrated the dependence of the EMF-induced cytotoxicity on the shape and concentration of AgNPs. The maximal cell killing effect was observed at 900 MHz frequency for NPs of all shapes and concentrations. The highest temperature elevation was observed for GrNPs solution irradiated by EMF of 900 MHz frequency. The exposure to EMF led to significant increase of ROS formation in triangular and colloidal AgNPs solutions. However, no impact of EMF on ROS production was detected for spherical AgNPs. GrNPs demonstrated ROS-protective activity that was dependent on their concentration. Our findings indicate the feasibility to control cytotoxicity of AgNPs by means of EMFs. The effect EMF on the biological activity of AgNPs and GrNPs is reported here for the first time.


Assuntos
Campos Eletromagnéticos , Grafite/química , Grafite/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Espécies Reativas de Oxigênio/metabolismo , Temperatura
10.
J Med Ultrason (2001) ; 45(1): 31-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28689300

RESUMO

PURPOSE: To scrutinize the apoptotic and genotoxic effects of low-intensity ultrasound and an ultrasound contrast agent (SonoVue; Bracco Diagnostics Inc., EU) on human peripheral mononuclear blood cells (PMBCs). METHODS: PMBCs were subjected to a low-intensity ultrasound field (1-MHz frequency; spatial peak temporal average intensity 0.18 W/cm2) followed by analysis for apoptosis and DNA damage (single-strand breaks + double-strand breaks). The comet assay was then repeated after 2 h to examine the ability of cells to repair DNA breaks. RESULTS: The results demonstrated that low-intensity ultrasound was capable of selectively inducing apoptosis in leukemic PMBCs, but not in healthy cells. The introduction of ultrasound contrast agent SonoVue resulted in an increase in apoptosis in both groups. DNA analysis after ultrasound exposure indicated that ultrasound triggered DNA damage in leukemic PMBCs (66.05 ± 13.36%), while the damage was minimal (7.01 ± 0.89%) in control PMBCs. However, both cell lines demonstrated an ability to repair DNA single- and double-strand breaks 2 h after sonication. CONCLUSIONS: The study demonstrated that low-intensity ultrasound selectively induced apoptosis in cancer PMBCs. Ultrasound-induced DNA damage was observed primarily in leukemic PMBCs. Nevertheless, both cell lines were able to repair ultrasound-mediated DNA strand breaks.


Assuntos
Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Leucemia/patologia , Leucócitos Mononucleares/efeitos da radiação , Ondas Ultrassônicas , Adulto , Linhagem Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Ensaio Cometa , Meios de Contraste/administração & dosagem , Voluntários Saudáveis , Humanos , Masculino , Fosfolipídeos/administração & dosagem , Hexafluoreto de Enxofre/administração & dosagem
11.
J Therm Biol ; 67: 9-14, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28558940

RESUMO

At present, the current therapeutic strategy for apoptosis induction mainly relies on the administration of pharmacological apoptotic modulators. Apart from that, apoptosis can be induced by various external stimuli such as hyperthermia, ionizing radiation, and electric fields. Despite advantages, both physical and pharmacological approaches bear some limitations as well. The rationale of this study was to overcome the limitations by combining hyperthermia and apoptotic modulator 'bortezomib' (Velcade). Two types of human blood cancer cell lines were utilized: human leukemic monocyte lymphoma cell U937 line and peripheral blood mononuclear cells (PMBCs) derived from the patient diagnosed with acute myeloid leukemia. Prior to apoptosis experiments, cytotoxicity tests were performed at three types of temperature regimes (40°, 42° and 44°C). We observed a gradual inhibition of cell viability correlating with an increase of temperature and drug concentration in both cell lines. However, there was no significant difference between sham group and groups of leukemic PMBCs treated by high temperature (44°C) and bortezomib. In U937 cells, combined treatment by heat shock and bortezomib led to an increase the number of cells underwent the late apoptosis stage. At the same time, similar treatment of PMBCs resulted in the stimulation of early apoptosis. Our data suggest that combination of bortezomib and hyperthermia enhances apoptosis induction in human cancer white blood cells, indicating a therapeutic potential for blood cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Temperatura Alta , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Células Tumorais Cultivadas
12.
Med Sci Monit ; 22: 5049-5057, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28003640

RESUMO

BACKGROUND We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). MATERIAL AND METHODS Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.18 W/cm² and 0.05 W/cm²) were used for the experiments. Treated U937 cells were analyzed for viability and levels of early and late apoptosis. In addition, scanning electron microscopy analysis of treated cells was performed. RESULTS The percentage of cells that underwent early apoptosis in the group treated with ultrasound and Sonazoid was 8.0±1.31% (intensity 0.18 W/cm²) and 7.0±1.69% (0.05 W/cm²). However, coupling of bortezomib and Sonazoid resulted in an increase in the percentage of cells in the early apoptosis phase, up to 32.50±3.59% (intensity 0.18 W/cm²) and 33.0±4.90% (0.05 W/cm²). The percentage of U937 cells in the late apoptosis stage was not significantly different from that in the group treated with bortezomib only. CONCLUSIONS Our findings indicate the feasibility of apoptosis induction in blood cancer cells by using a combination of bortezomib, ultrasound contrast agents, and low-intensity ultrasound.


Assuntos
Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Ultrassom , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Células U937
13.
Ecotoxicology ; 23(7): 1283-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990120

RESUMO

An assessment of the health status of ecosystems exposed to man-made pollution is a vital issue for many countries. Particularly it concerns the consequences of contamination caused by the activity of the space industry. Each rocket launch is accompanied by the introduction of parts of the rocket propellant into the environment. This study aims to scrutinize the effect of the components of rocket fuel on the induction of lipid peroxidation and chromosomal aberrations on rodents inhabiting the area exposed to pollution from Baikonur cosmodrome. The results showed the increase of the level of lipid hydroperoxide and malondialdehyde in the livers of Citellus pygmaeus Pallas and Mus musculus L., which indicates an augmentation of free radical activity and DNA damage. The cytogenetic analysis of bone marrow cells revealed that the frequency of chromosomal aberrations was a few times higher in the rodents from contaminated territory. The signs of oxidative stress and high level of chromosomal aberrations indicate the environmental impact of the cosmodrome, and its possible toxic and mutagenic effects on ecosystems.


Assuntos
Instabilidade Cromossômica , Poluição Ambiental/efeitos adversos , Hidrocarbonetos/toxicidade , Camundongos/genética , Sciuridae/genética , Animais , Dano ao DNA , Monitoramento Ambiental , Cazaquistão , Peroxidação de Lipídeos , Fígado/fisiopatologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Voo Espacial
14.
Cent Asian J Glob Health ; 3(Suppl): 162, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29805891

RESUMO

INTRODUCTION: There are an increasing number of different xenobiotics negatively influencing population health. Therefore, it is important to find effective protectors against mutagenic and toxic effects of environmental pollutants. Naturally occurring biologically active substances, the majority of which are antioxidants, are capable of functioning as modifiers of the induced mutation process. The application of various naturally occurring protectors will lower essential risks of congenital malformations, cancer, and hereditary diseases caused by mutational damages. Therefore, it is crucial to screen algal flora of Kazakhstan for the antimutagenic activity. This study involved the assessment of antimutagenic potential of biologically active polypeptide (BAP) produced in mixed microalgae cultures. METHODS: 70 white outbred male rats (Rattus norvegicus) at 6 months of age were used for this study. The dosage of BAP produced by microalgae associates Anabaena flos-aquae x Anabaenopsis sp. comprised 100 mg/kg. Cadmium sulfate was used as a mutagen in a concentration of 1 mg/kg. Experiments on antimutagenic activity of BAP were carried out with the Mammalian Bone Marrow Chromosomal Aberration Test. RESULTS: After acute and subacute exposure of BAP, the level of chromosomal structural abnormalities in rat bone marrow cells was the same as in control group. Therefore, BAP showed no mutagenic activity, whereas exposure to cadmium sulfate at used concentration induced chromosomal aberrations with a significantly higher frequency than the spontaneous mutation rate. The exposure combination of BAP with cadmium sulfate resulted in a two-fold decrease (p< 0.05) of mutagen-induced chromosomal aberrations. The range of induced chromosomal aberrations included alterations of all types both in control and experimental groups. CONCLUSION: Most of the genotoxic effects are mediated through oxidative stress. The repair of DNA damage is an enzymatic process, which depends on the cellular metabolic rate. It has previously been shown that many biologically active substances lead to reduction of DNA sensitivity to mutagenic damaging factors. Based on these facts and obtained results, it can be assumed that BAP from mixed microalgae cultures Anabaena flos-aquae x Anabaenopsis sp. are capable of blocking free radical process reducing the likelihood of genome damage, as well as triggering the cellular repair system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...